Transformations of Exponential Functions

• To graph an exponential function of the form $y = a(c)^{b(x-h)} + k$, apply transformations to the base function, $y = c^x$, where c > 0. Each of the parameters, a, b, h, and k, is associated with a particular transformation.

Example 1: Translations of Exponential Functions

Consider the exponential function $y = 2^x$. For each of the transformed functions,

- State the parameter and describe the transformation.
- Graph the base function and the transformed function on the same grid.
- Describe any changes to the domain, range, intercepts, and equation of the horizontal asymptote.
- Explain the effect of the transformation on an arbitrary point, (x,y), on the graph of the base function.

a.
$$y = 2^x + 3$$

Sal	lution
201	ulion

a. $y = 2^x + 3$

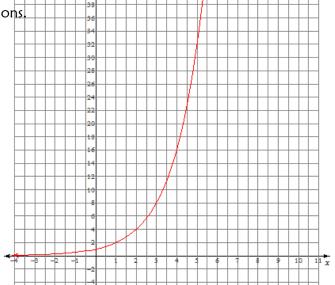
Complete each table of values and then graph the functions.

 $y = 2^x$

X	у
-2	
-1	
0	
1	
2	
3	
4	
5	

$$y = 2^x + 3$$

X	у
-2	
-1	
0	
1	
2	
3	
4	
5	



For the function $y = 2^x + 3$, state the

Domain:

Range:

x-intercept:

y-intercept: _____

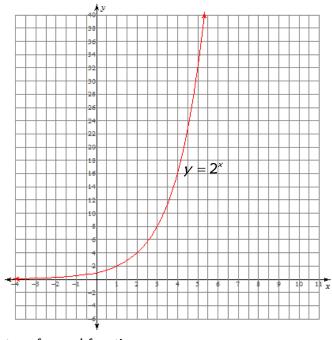
Equation of the horizontal asymptote:

Mapping rule:

b.
$$y = 2^{x-5}$$

ν	=	2 ^x	
V	=	2)×

<i>y</i> – 2	
x	у
-2	1
	4
-1	1
	$\overline{2}$
0	1
1	2 4
2	4
3	8
3 4 5	16 32
5	32



Complete the table of values. Draw the graph of the transformed function.

 $y = 2^{x-5}$ Mapping Rule:

X	у

Comparing the graph of $y = 2^{x-5}$ to $y = 2^x$ will allow you to determine the value of the parameter h. h= ______.

This transformation indicates that the graph of $y=2^{x-5}$ moves _____ compared to the graph of $y=2^x$.

For the function $y = 2^{x-5}$, state the

Domain:

Range:

x-intercept:

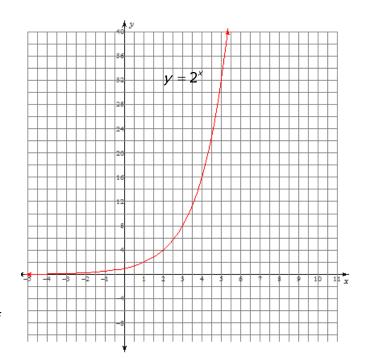
y-intercept: _____

Equation of the horizontal asymptote: _____

c.
$$y + 4 = 2^{x+1}$$

$$y=2^x$$

y – Z	
×	у
-2	1
	$\frac{\overline{4}}{4}$
-1	1
	$\frac{\overline{2}}{2}$
0	1
1	2
2	2 4
3	8
2 3 4 5	16 32
5	32



Complete the table of values. Draw the graph of the transformed function.

$$y + 4 = 2^{x+1}$$

Mapping Rule:	
mapping maior	

x	у

Comparing $y + 4 = 2^{x+1}$ to $y = 2^x$ will allow you to determine the value of the parameters h and k. h= _____while

This transformation indicates that the graph of $y + 4 = 2^{x+1}$ moves

compared to the graph of $y = 2^x$

For the function $y + 4 = 2^{x+1}$, state the

Domain:

x-intercept: ____

y-intercept: _____

Equation of the horizontal asymptote:

Example 2: Stretches of Exponential Functions

Consider the exponential function $y = \left(\frac{1}{2}\right)^{2}$. For each of the following transformations,

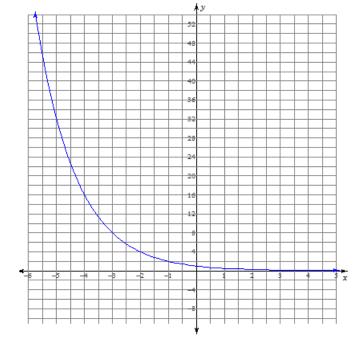
- State the parameter and describe the corresponding transformation
- Graph the base function and the transformed function on the same grid
- Describe any changes to the domain, range, intercepts, and equation of the horizontal asymptote
- Show what happens to an arbitrary point, (x,y), on the graph of the base function

a.
$$y = 2\left(\frac{1}{2}\right)^x$$

Complete the tables of values. Draw the graph of the functions.

$$y = \left(\frac{1}{2}\right)^x$$

x	Υ
-4	
-3	
-2	
-1	
0	
1	
2	



$$y=2\left(\frac{1}{2}\right)^x$$

Mapping Rule: _____

×	Y
-4	
-3	
-2	
-1	
0	
1	
2	

Comparing $y = 2\left(\frac{1}{2}\right)^x$ to $y = \left(\frac{1}{2}\right)^x$ will allow you to determine the value of the parameter a. a = ______

This transformation indicates that the graph of $y = 2\left(\frac{1}{2}\right)^x$ stretches

_____ compared to the

graph of $y = \left(\frac{1}{2}\right)^x$. For the function $y = 2\left(\frac{1}{2}\right)^x$, state the

Domain :_____

Range:

x-intercept:

y-intercept:

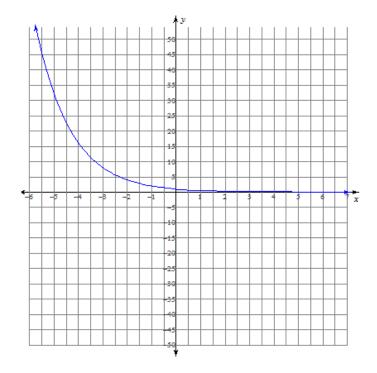
Equation of the horizontal asymptote;

b.
$$y = \left(\frac{1}{2}\right)^{2x}$$

Complete the table of values. Sketch the graphs of the functions.

$$y = \left(\frac{1}{2}\right)^x$$

(-)	
x	У
-5	32 16
-4	16
-3	8
-5 -4 -3 -2	4
-1	2
0	1
1	1
	$\frac{\overline{2}}{2}$
2	1
	$\frac{1}{4}$



$$y = \left(\frac{1}{2}\right)^{2x}$$

Mapping Rule:

×	у
	32
	16
	8
	4
	2
	1
	1
	$\frac{\overline{2}}{2}$
	1
	$\frac{\overline{4}}{4}$
1	

Comparing $y = \left(\frac{1}{2}\right)^{2x}$ to $y = \left(\frac{1}{2}\right)^{x}$ will allow you to determine the value of the parameter b. b= ______. This transformation indicates that the graph of $y = \left(\frac{1}{2}\right)^{2x}$ stretches

compared to the graph of $y = \left(\frac{1}{2}\right)^x$

For the function $y = \left(\frac{1}{2}\right)^{2x}$, state the

Domain:

Range :_____

x-intercept: _____

y-intercept: _____

Equation of the horizontal asymptote; _____

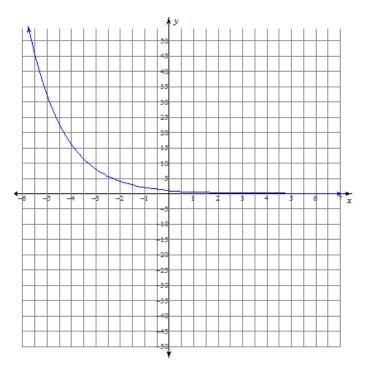
Pre-Calculus 12A

c.
$$y = -3\left(\frac{1}{2}\right)^{-\frac{1}{2}x}$$

Complete the table of values. Sketch the graphs of the functions.

$$y = \left(\frac{1}{2}\right)^x$$

x	у
-4	16
-3	8
-2	4
-1	2
0	1
1	1
	2



$$y = -3\left(\frac{1}{2}\right)^{-\frac{1}{2}x}$$

Mapping Rule: _____

×	У
	·
1	I

Comparing $y = -3\left(\frac{1}{2}\right)^{-\frac{1}{2}x}$ to $y = \left(\frac{1}{2}\right)^x$ will allow you to determine the value of the parameters a and b. a =_____ b =_____

This transformation indicates that the graph of $y = -3\left(\frac{1}{2}\right)^{-\frac{1}{2}x}$

______as compared to the graph of $y = \left(\frac{1}{2}\right)^x$.

For the function $y = -3\left(\frac{1}{2}\right)^{-\frac{1}{2}x}$, state the

Domain: _____

Range:

x-intercept:

y-intercept: _____

Equation of the horizontal asymptote: _____

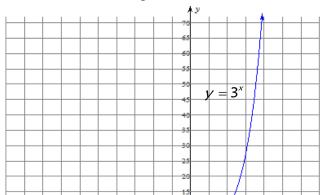
Example 3: Combining Transformations of Exponential Functions

Consider the base function $y = 3^x$. For each transformed function,

- State the parameters and describe the corresponding transformations
- Complete the table of values to show what happens to the given points under the transformations
- Sketch the graph of the base function and the transformed function.
- a. Describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts

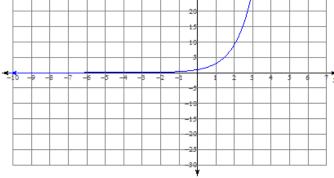
Complete each table of values and sketch the graph of the function $y = \frac{1}{3}(3)^{x+4}$.

X	У
-2	
-1	
0	
1	
2	
3	
4	



$$y = \frac{1}{3}(3)^{x+4}$$
 MAPPING RULE:

X	У



Comparing $y = \frac{1}{3}(3)^{x+4}$ to $y = 3^x$ will allow you to determine the value of the parameters a, b, h and k.

a= _____, b= _____, h= _____, k= ____

These transformations indicate that the graph of $y = \frac{1}{3} (3)^{x+4}$

as compared to the graph of $y = 3^x$.

For the function $y = \frac{1}{3}(3)^{x+4}$, state the

Domain _____

Range _____

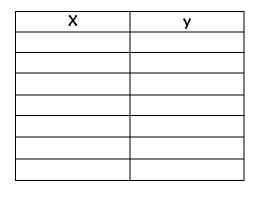
x-intercept: _____

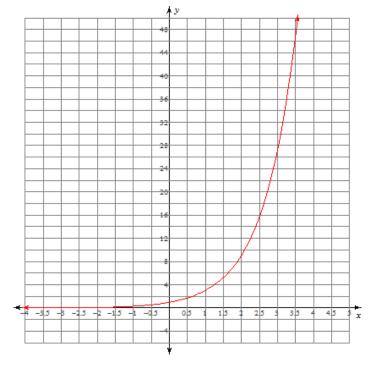
y-intercept: _____

Equation of Horizontal Asymptote:

b. $y = 3^x$

X	у
-2	1
	9
-1	1
	3
0	1
1	3
2	9
3	27





Complete the table of values and sketch the graph of $y = 2(3)^{-2(x-1)} - 5$

Mapping Rule:

Comparing $y = 2(3)^{-2(x-1)} - 5$ to $y = 3^x$ will allow you to determine the value of the parameters a, b, h and k. a =_____, b =_____, k =_____

These transformations indicate that the graph of $y = 2(3)^{-2(x-1)} - 5$ is

as compared to the graph of $y = 3^x$.

or the function	$y = 2(3)^{-2(x-1)}$	-5,	state	the
Domain .				

x-intercept: _____

Equation of the horizontal asymptote: _____

Range:

y-intercept: _____

Mapping Rule $(x, y) \rightarrow$

Example 4A: Use Transformations of an Exponential Function to Model a Situation

The real estate board in a city announces that the current average price of a house in the city is \$400 000. It predicts that average prices will double every 15 years.

- a. Write a transformed exponential function in the form $y = a(c)^{b(x-h)} + k$ to model this situation. Justify your answer.
- b. Describe how each of the parameters in the transformed function relates to the information provided.
- c. Predict the value of the house after 10 years.

Solution:

a. Since the average price of a house doubles over a certain time interval, the base function is $P(t) = 2^t$, where P is the price of the house and t is the time.

The time is in intervals of 15 years, so t can be replaced by the rational exponent $\frac{r}{r}$, where r represents the number of years. Therefore the function becomes P(r) =______. The current price of a home is \$400 000, so the P-intercept is (______, _____). This means that there must be a

the number of years. Therefore the transformed function that models the home is \$400,000, so the P-intercept is (______, ______). This means that there is \$400 for of ____. Therefore, the transformed function that models the price of the house is

$$P(r) =$$

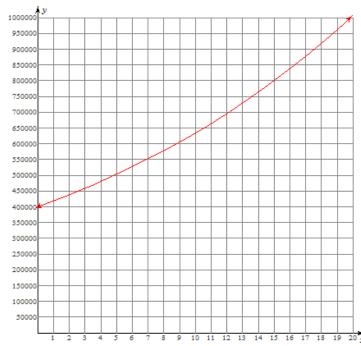
b. Based on the function $y = a(c)^{b(x-h)} + k$, the parameters of the function are

, representing

, representing a =

c. Predict the value of the house after 10 years. Estimate by using the graph and then confirm with the equation.

٧ u



Number of Years

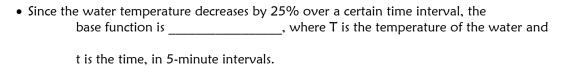
Example 4B: Use Transformations of an Exponential Function to Model a Situation

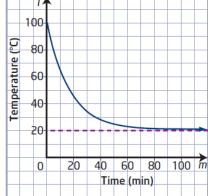
A cup of water is heated to 100 °C and then allowed to cool in a room with an air temperature of 20 °C. The temperature, T, in °C, is measured and plotted on a coordinate grid as a function of time, m, in minutes. It is found that the temperature of the water decreases exponentially at a rate of 25% every 5 minutes.

a. Write a transformed exponential function in the form $y = a(c)^{b(x-h)} + k$ to model this situation.

b. Use your equation to predict the temperature of the water after 1 hour.

Solution:





• The time is in intervals of 5 minutes, so t can be replaced by the rational exponent

_____, where m represents the number of minutes. Therefore, the function becomes _____.

The horizontal asymptote is at ______ (corresponding to the temperature of the room). This means that the function has been ______.

This is represented in the function as _____.

• The T-intercept of the graph is at _____ (corresponding to the initial temperature of the water).

This means that there must be a ______. Use the coordinates of the T-intercept to determine the value of a:

$$T(m) = a(0.75)^{\frac{m}{5}} + 20$$

Therefore, the transformed function that models the temperature of the water is ______.

b. Temperature of the water after 1 hour:

$$T(m) = 80(0.75)^{\frac{m}{5}} + 20$$

Note: From the graph, when m = 60, the value of T is approximately mple 5: