Equations and Graphs of Trigonometric Functions

When a question asks you to solve a system of trigonometric equations, you are looking for the values of θ that make both equations true. There are two ways to solve for θ : graphically and algebraically.

Example 1: Solving a Trigonometric Equation Graphically and Algebraically

Solve $\cos \theta=\frac{1}{2}$ in the domain $[0,2 \pi)$ and then state the general solutions.

GRAPHICALLY:

You are looking for the locations where the cosine curve intersects with the line $y=\frac{1}{2}$. Check for solutions in the domain $[0,2 \pi]$.

Reading the solutions off the graph:

$$
\frac{\pi}{3} \text { AND } \frac{5 \pi}{3}
$$

GENERAL SOLUTIONS

ALGEBRAICALLY

$\cos \theta=\frac{1}{2}$
$\cos ^{-1}(\cos \theta)=\cos ^{-1}\left(\frac{1}{2}\right)$
$\theta=\frac{\pi}{3}$
Quadrant I angle
$\theta=\frac{5 \pi}{3}$ Quadrant IV angle
General Solutions: $\frac{\pi}{3}+2 \pi k, k \in I$ AND $\frac{5 \pi}{3}+2 \pi k, k \in I$

Example: Solving a Trigonometric Equation Graphically and Algebraically

Solve $\cos 2 \theta=\frac{1}{2}$ in the domain $[0,2 \pi)$ graphically and algebraically and then state the general solutions.

GRAPHICALLY

The points of intersection between the graphs of $y=\cos 2 \theta$ and $y=\frac{1}{2}$ in the domain $[0,2 \pi)$ are:

GENERAL SOLUTIONS:

ALGEBRAICALLY:

Solve $\cos 2 \theta=\frac{1}{2}$
Step 1: Let $\mathrm{a}=2 \theta$
Step2 : $\cos a=\frac{1}{2}$

Step 3: General Solutions $a=\frac{\pi}{3}+2 \pi k, k \in I \quad$ AND $a=\frac{5 \pi}{3}+2 \pi k, k \in I$
However we were asked to solve for θ not a. So to continue

Step4: $2 \theta=\frac{\pi}{3}+2 \pi k, k \in I \quad$ AND $\quad 2 \theta=\frac{5 \pi}{3}+2 \pi k, k \in I$
Step5: $\theta=\frac{\pi}{6} \pm \pi k, k \in I \quad$ AND $\quad \theta=\frac{5 \pi}{6}+\pi k, k \in I$
Solutions in the domain $[0,2 \pi)$ are: \qquad .

Example 3: Solving Trigonometric Equations

Solve for θ in general form and then in the specified domain. Use exact solutions when possible.
a. $\sec 3 \theta=\frac{3}{2}, 0 \leq \theta \leq 360^{\circ}$
b. $\sqrt{3} \csc \left(\theta+20^{\circ}\right)+2=0,-180^{\circ} \leq \theta<360^{\circ}$
c. $3 \tan \left(\theta-\frac{\pi}{4}\right)=-\sqrt{3}, 0 \leq \theta \leq 3 \pi$
d. $16=8 \cot \frac{1}{3} \theta,-4 \pi \leq \theta \leq 4 \pi$
e. $\sin \left(\frac{1}{2} \theta-40^{\circ}\right)=0,-720^{\circ} \leq \theta<720^{\circ}$
f. $\sqrt{2} \cos [2(\theta+1)]+1=0,-\pi \leq \theta \leq \pi$

Solution:
$\sec 3 \theta=\frac{3}{2}, 0 \leq \theta \leq 360^{\circ}$
$\sqrt{3} \csc \left(\theta+20^{\circ}\right)+2=0,-180^{\circ} \leq \theta<360^{\circ}$

$$
3 \tan \left(\theta-\frac{\pi}{4}\right)=-\sqrt{3}, 0 \leq \theta \leq 3 \pi
$$

$$
16=8 \cot \frac{1}{3} \theta,-4 \pi \leq \theta \leq 4 \pi
$$

$$
\sin \left(\frac{1}{2} \theta-40^{\circ}\right)=0,-720^{\circ} \leq \theta<720^{\circ}
$$

$\sqrt{2} \cos [2(\theta+1)]+1=0,-\pi \leq \theta \leq \pi$

Example 4: Solving a Trigonometric Equation Application

The London Eye is a huge Ferris wheel with diameter 135 meters (443 feet) in London, England, which completes one rotation every 30 minutes.
The height of a rider on the London Eye Ferris wheel can be determined by the equation
$h(t)=-67.5 \cos \left(\frac{\pi}{15} t\right)+69.5$

where $h(t)$ is the height in metres and t is the time in minutes. How long is the rider more than 100 metres above ground?

Solution:

Extra Practice:

The depth of water at a dock rises and falls with the tide, following the equation $f(t)=4 \sin \left(\frac{\pi}{12} t\right)+7$, where t is measured in hours after midnight. A boat requires a depth of 9 feet to come to the dock. At what times will the depth be 9 feet?

