The Remainder Theorem

Long Division

You can use long division to divide a polynomial by a binomial: $\frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a}$
The components of long division are

- the dividend, $\mathrm{P}(\mathrm{x})$, which is the polynomial that is being divided
- the divisor, x-a, which is the binomial that the polynomial is being divided by
- the quotient, $\mathrm{Q}(\mathrm{x})$, which is the expression that results from the division
- the remainder, R , which is the value or expression that is left over after dividing

To check the division of a polynomial, verify the statement $P(x)=(x-a) Q(x)+R$. In other words, multiply the quotient, $\mathrm{Q}(\mathrm{x})$, by the divisor, $\mathrm{x}-\mathrm{a}$, and add the remainder, R , to the product. The result is the dividend, $P(x)$.

Example 1: Divide a Polynomial by a Binomial of the Form x-a

a. Divide $P(x)=9 x+4 x^{3}-12$ by $x+2$. Express the result in the form $\frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a}$
b. Identify any restrictions on the variable.
c. Write the corresponding statement that can be used to check the division.

Solution:

a. $x + 2 \longdiv { 4 x ^ { 3 } + 0 x ^ { 2 } + 9 x - 1 2 }$
b. Restrictions on the variable
c. $\quad P(x)=(x-a) Q(x)+R$

Example 2: Apply Polynomial Division to Solve a Problem

The volume, V, in cubic centimeters, of gift boxes is given by $V(x)=2 x^{3}+x^{2}-27 x-36$. The height, h , in centimeters is $\mathrm{x}+3$. What are the possible dimensions of the boxes in terms of x ?

Solution:
Divide the \qquad of the box by the \qquad to obtain an expression for the of the base of the box. Then, factor this expression to obtain expressions for the and \qquad of the base.

Expressions for the dimensions, in centimeters, are \qquad , \qquad , \qquad .

Synthetic Division

- a short form of division that uses only the coefficients of the terms and fewer calculations.

Example 3: Divide a Polynomial Using Synthetic Division

a. Use long division to divide $5 x^{2}-x+2 x^{3}-6$ by $x+2$.
b. State the restriction.
c. Use synthetic division to divide $5 x^{2}-x+2 x^{3}-6$ by $x+2$..

Solution:

Remainder Theorem

The remainder theorem states that when a polynomial in $x, P(x)$, is divided by a binomial of the form $x-a$, the remainder is $\mathrm{P}(\mathrm{a})$.

- If the remainder is 0 , then the binomial $x-a$ is a factor of $P(x)$
- If the remainder is not 0 , then the binomial $x-a$ is not a factor of $P(x)$.

Example 4: Apply the Remainder Theorem

a. Use the remainder theorem to determine the remainder when $P(x)=3 x^{4}-x^{3}-5$ is divided by $x-3$.
b. Verify your answer using long division.
c. Verify your answer using synthetic division.

Solution:

a. $\quad P(x)=3 x^{4}-x^{3}-5$
b.
c.

