Infinite Limits

There are many examples of functions that increase and/or decrease without bound. These functions have limit behaviour that does not exist. If the y-values increase or decrease without bound as x approaches c, we can write $\lim _{x \rightarrow c} f(x)=+\infty$ or $\lim _{x \rightarrow c} f(x)=-\infty$, respectively. It is important to note that infinity is a behaviour, not a value. Stating that the limit of a given function is $+\infty$ or $-\infty$ is simply a specific way of saying that the limit does not exist.

Example 1:

Find $\lim _{x \rightarrow a} f(x)$

Solution:

By looking at the graph of $y=f(x)$, we can see that the y-values increase without bound as x approaches a from the left and from the right.
 $\lim _{x \rightarrow a} f(x)=$ \qquad

Example 2:

Find $\lim _{x \rightarrow a} f(x)$

Solution:

By looking at the graph of $y=f(x)$, we can see that the y-values decrease without bound as x approaches a from the left and from the right. $\lim _{x \rightarrow a} f(x)=$ \qquad

Example 3:

a. Find $\lim _{x \rightarrow a^{-}} f(x)$
b. Find $\lim _{x \rightarrow a^{+}} f(x)$

Solution:

a. By looking at the graph of $y=f(x)$, we can see that the y-values decrease without bound as x approaches a from the left.
$\lim _{x \rightarrow a^{-}} f(x)=$ \qquad
b. By looking at the graph of $y=f(x)$, we can see that the y-values increase without bound as \times approaches a from the right.
$\lim _{x \rightarrow a^{+}} f(x)=$ \qquad

Vertical Asymptotes and Points of Discontinuity

To find these features of a given function, first factor the numerator and denominator. There will be either a vertical asymptote or a point of discontinuity at any x-value that would cause the denominator to equal zero.

Next, cancel like factors. If this eliminates the division by zero, then the function has a hole in the graph at the corresponding x-value. If canceling like factors does not eliminate the division by zero, then the function has a vertical asymptote at the corresponding x-value.

Once we have found the vertical asymptotes and points of discontinuity of a function, we can use limits to determine the behaviour of the function on each side of an asymptote and the y-coordinate of a point of discontinuity.

Functions that have vertical asymptotes approach positive or negative infinity as the x-values approach an asymptote from the left- and/or right-hand sides.

Functions that have points of discontinuity (holes) approach a finite value as the x-values approach a point of discontinuity from both sides.

Example 4:

Use factoring and simplifying to determine if there are any vertical asymptotes or points of discontinuity for the function $f(x)=\frac{x^{2}-3 x+2}{x^{2}-4 x+3}$.

Solution:

$f(x)=\frac{x^{2}-3 x+2}{x^{2}-4 x+3}=$
Since the factor $(x-1)$ cancels out of the denominator, we know there is a \qquad at $x=$ \qquad .

Since the factor $(x-3)$ doesn't cancel out of the denominator, we know there is a \qquad at $x=$ \qquad .

Example 5:

As discovered in the previous example, the function $f(x)=\frac{x^{2}-3 x+2}{x^{2}-4 x+3}$ has a point of discontinuity at $\mathrm{x}=1$.
Find the limit of $f(x)$ as x approaches 1 in order to determine the y-coordinate of this point.

Solution:

$$
\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}-4 x+3}=\lim _{x \rightarrow 1} \frac{(x-2)(x-1)}{(x-3)(x-1)}=\lim _{x \rightarrow 1} \frac{(x-2)}{(x-3)}=
$$

Therefore, the coordinates of the P.O.D. are \qquad .

Example 6:

As discovered in example 4, the function $f(x)=\frac{x^{2}-3 x+2}{x^{2}-4 x+3}$ has a vertical asymptote at $\mathrm{x}=3$. Find the limit of $f(x)$ as x approaches 3 from the left and from the right in order to determine the behaviour of the function on each side of the asymptote.

Solution:

Substitute an x-value very close to 3 , approaching from the left $(x<3)$, to calculate the following limit:

$$
\lim _{x \rightarrow 3^{-}} \frac{x^{2}-3 x+2}{x^{2}-4 x+3}=\lim _{x \rightarrow 3^{-}} \frac{(x-2)(x-1)}{(x-3)(x-1)}=\lim _{x \rightarrow 3^{-}} \frac{(x-2)}{(x-3)}=
$$

Therefore, the function \qquad without bound as x approaches 3 from the left.

Substitute an x-value very close to 3 , approaching from the right ($x>3$), to calculate the following limit:

$$
\lim _{x \rightarrow 3^{+}} \frac{x^{2}-3 x+2}{x^{2}-4 x+3}=\lim _{x \rightarrow 3^{+}} \frac{(x-2)(x-1)}{(x-3)(x-1)}=\lim _{x \rightarrow 3^{+}} \frac{(x-2)}{(x-3)}=
$$

Therefore, the function \qquad without bound as \times approaches 3 from the right.

Note that the results of the previous examples are consistent with the features on the graph of $f(x)$:

Limits and End Behaviour: Horizontal Asymptotes

In order to determine the end behaviour of a function, we can evaluate limits at infinity. That is, we calculate a limit (algebraically, graphically, or numerically) as x approaches positive or negative infinity.

Using the result of the limit calculation, we can determine whether or not the graph of the function has a horizontal asymptote.

When direct substitution into the function produces the indeterminate form $\frac{ \pm \infty}{ \pm \infty}$ or $\infty-\infty$, we must be careful. These are cases which often have finite limits that can be determined through some algebraic manipulation.

For any function, there are three possibilities for the limit at infinity:

Example 7: Determining a Limit at Infinity

Determine the end-behaviour of the function $f(x)=\frac{10 x^{2}+7 x}{3 x^{2}-5 x+1}$ by calculating $\lim _{x \rightarrow \infty} \frac{10 x^{2}+7 x}{3 x^{2}-5 x+1}$.

Solution:

Direct substitution gives $\frac{\infty}{\infty}$.
Divide the numerator and denominator by the highest power of x, simplify, and then substitute.
$\lim _{x \rightarrow \infty} \frac{10 x^{2}+7 x}{3 x^{2}-5 x+1}=$

Therefore, there is a horizontal asymptote for the function $f(x)=\frac{10 x^{2}+7 x}{3 x^{2}-5 x+1}$ at \qquad .

Example 8: Determining a Limit at Infinity

Determine the end-behaviour of the function $f(x)=\frac{4 x^{3}-6 x^{2}+8}{7 x^{5}+6 x^{2}-9 x+2}$ by calculating $\lim _{x \rightarrow-\infty} \frac{4 x^{3}-6 x^{2}+8}{7 x^{5}+6 x^{2}-9 x+2}$.

Solution:

Direct substitution gives $\frac{\infty}{\infty}$.
Divide the numerator and denominator by the highest power of x, simplify, and then substitute.
$\lim _{x \rightarrow-\infty} \frac{4 x^{3}-6 x^{2}+8}{7 x^{5}+6 x^{2}-9 x+2}=$

Therefore, there is a horizontal asymptote for the function $f(x)=\frac{4 x^{3}-6 x^{2}+8}{7 x^{5}+6 x^{2}-9 x+2}$ at \qquad .

Example 9: Determining a Limit at Infinity

Determine the end-behaviour of the function $f(x)=\frac{3-4 x^{2}}{5 x-1}$ by calculating $\lim _{x \rightarrow \pm \infty} \frac{3-4 x^{2}}{5 x-1}$.

Solution:

Direct substitution gives $\frac{\infty}{\infty}$ or $\frac{-\infty}{\infty}$.
Divide the numerator and denominator by the highest power of x, simplify, and then substitute.
$\lim _{x \rightarrow \pm \infty} \frac{3-4 x^{2}}{5 x-1}=$

Therefore, there is no horizontal asymptote for the function $f(x)=\frac{3-4 x^{2}}{5 x-1}$.
To determine whether the function increases or decreases without bound, we can determine the limits at infinity separately (That is, the limit as x approaches negative infinity and the limit as x approaches positive infinity).

Substitute any representative x-value (very small, tending toward negative infinity, and then very large, tending toward positive infinity), into the leading terms of the numerator and denominator to determine if the overall limit will be positive or negative infinity.

$$
\lim _{x \rightarrow-\infty} \frac{3-4 x^{2}}{5 x-1}=\frac{-4(\ldots)}{5(\ldots}=
$$

$$
\left.\lim _{x \rightarrow+\infty} \frac{3-4 x^{2}}{5 x-1}=\frac{-4(\ldots)}{5(\ldots}\right)^{2}=
$$

Note that these limits reflect the end behaviour of the graph of $f(x)=\frac{3-4 x^{2}}{5 x-1}$:

Example 10: Limits at Infinity Involving Radicals

Determine $\lim _{x \rightarrow+\infty} \frac{\sqrt{2 x^{3}-x}}{3 x^{2}-6}$

Solution:

Direct substitution gives $\frac{\infty}{\infty}$.
Divide the numerator and denominator by the highest power of x. Recall that, for example, $x^{2}=\sqrt{x^{4}}$.
$\lim _{x \rightarrow+\infty} \frac{\sqrt{2 x^{3}-x}}{3 x^{2}-6}=$

Example 11: Limits at Infinity Involving Radicals

Determine $\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}-4 x}-x\right)$

Solution:

Direct substitution gives $\infty-\infty$.
Multiply by the conjugate form of 1 .
$\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}-4 x}-x\right)=$

Practice:

1. Explain in your own words the meaning of each of the following:
a) $\lim _{x \rightarrow-\infty} f(x)=6$
b) $\lim _{x \rightarrow \infty} f(x)=-9$
c) $\lim _{x \rightarrow 4^{+}} f(x)=\infty$
d) $\lim _{x \rightarrow 6^{-}} f(x)=-\infty$
2. Can the graph of $\mathrm{y}=f(x)$ intersect the following? Explain.
a) vertical asymptote
b) horizontal asymptote
3. For the function whose graph is shown below, determine the following:
a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$
c) $\lim _{x \rightarrow-3^{-}} f(x)$
d) $\lim _{x \rightarrow-3^{+}} f(x)$
e) State the equations of the vertical and horizontal asymptotes.

4. Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}}$ by using a table of values.
5. Evaluate the following limits.
a) $\lim _{x \rightarrow \infty} \frac{5 x^{4}-7 x^{3}+7 x^{2}-1}{3 x^{4}+2 x^{3}}$
b) $\lim _{x \rightarrow-\infty} \frac{x^{5}-x^{2}}{x^{3}-2 x}$
c) $\lim _{x \rightarrow \infty} \frac{9 x^{2}-x+8}{2 x^{4}+x^{3}-7}$
d) $\lim _{x \rightarrow-\infty} \frac{12 x^{2}-6 x^{3}+5 x^{4}+9 x^{5}}{3 x^{5}+2 x^{4}-4 x^{3}+2 x}$
e) $\lim _{x \rightarrow \infty} \frac{5 x^{3}-4 x^{2}-5 x}{4 x^{3}+3 x}$
f) $\lim _{x \rightarrow \infty}\left[\left(\frac{1}{8}\right)^{x}+\frac{x^{3}-4 x^{2}-5 x}{4 x^{3}+3 x}-7\right]$
g) $\lim _{x \rightarrow \infty}\left[\left(\frac{7}{3}\right)^{-x}+\frac{4 x^{2}-5 x}{2 x^{2}+1}-9\right]$
h) $\lim _{x \rightarrow-\infty}\left(\frac{1}{5}\right)^{2 x}$
i) $\lim _{x \rightarrow \infty} \frac{\left(-2 x^{2}-3\right)(x+1)}{2-5 x^{3}}$
j) $\lim _{x \rightarrow-\infty}\left[12-\left(\frac{6}{5}\right)^{x}\right]$
k) $\lim _{x \rightarrow \infty} \frac{10 x^{2}}{\sqrt{4 x^{4}+1}}$
1) $\lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{x^{2}-2}-3 x}$
m) $\lim _{x \rightarrow \infty} \frac{4-\frac{3}{x}}{5 x^{2}+1}$
n) $\lim _{x \rightarrow \infty}\left[\frac{6 x}{2 x-1}-\frac{x+5}{3 x-4}\right]$
o) $\lim _{x \rightarrow \infty}\left[x-\sqrt{x^{2}+1}\right]$
p) $\lim _{x \rightarrow-\infty} \frac{|x-8|}{x-8}$
q) $\lim _{x \rightarrow \infty}\left[2 x-\sqrt{4 x^{2}+6 x}\right]$
r) $\lim _{x \rightarrow-\infty}(x-3)^{2}(x+1)^{5}$
s) $\lim _{x \rightarrow-\infty}(2 x-3)^{3}(x+1)^{3}$
6. Consider each of the following functions:
i. $f(x)=\frac{x^{2}+8 x-20}{2 x^{2}+x-6}$
ii. $f(x)=\frac{-2 x+4}{x^{3}+4 x^{2}-3 x-18}$
iii. $f(x)=\frac{x^{4}-2 x^{3}-63 x^{2}}{x^{2}-10 x+16}$
iv. $f(x)=\frac{10 x^{3}-18 x}{x^{3}-x^{2}-2 x}$
v. $f(x)=\frac{9-x^{2}}{16-2 x^{3}}$
vi. $f(x)=\frac{x^{3}+4 x^{2}+3 x}{x^{2}+8 x+15}$
a. determine if there are any vertical asymptotes and/or points of discontinuity, and for which values of x these occur.
b. use limits to determine the behavior of $f(x)$ on each side of any vertical asymptote that exists.
c. use limits to determine the coordinates of any point of discontinuity that exists.
d. use limits to determine whether or not a horizontal asymptote exists and, if so, what its equation is.

Answers:

1. a) As x approaches negative infinity, the value of the function approaches 6 .
b) As x approaches positive infinity, the value of the function approaches -9 .
c) As x approaches 4 from the right hand side, the value of the function gets increasingly large, approaching positive infinity.
d) As x approaches 6 from the left hand side, the value of the function becomes more negative, approaching negative infinity.
2. a) No, the function is undefined at a vertical asymptote.
b) Yes, the graph of a function can cross a horizontal asymptote. A horizontal asymptote describes the endbehaviour of a function - its tendency to approach a particular y-value as x approaches positive or negative infinity.
3. a) 4
b) 1
c) ∞
d) $-\infty$
e) $H A: y=1$ and $y=4$
$V A: x=-3$
4. $\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}}=0$
5. a) $\frac{5}{3}$
b) ∞
c) 0
d) 3
e) $\frac{5}{4}$
f) $-\frac{27}{4}$
g) -7
h) ∞
i) $\frac{2}{5}$
k) 5
l) -1
m) 0
n) $\frac{8}{3}$
o) 0
p) -1
q) $-\frac{3}{2}$
r) $-\infty$
s) \propto
j) 12
6.

ii)	VA				**
		$\lim _{x \rightarrow-3^{-}} f(x)=-\infty$	POD	$\lim _{x \rightarrow \infty} f(x)=0$	
$f(x)=\frac{-2 x+4}{}$	$x=-3$		(2, -0.08)		\checkmark
$f(x)=\frac{x^{3}+4 x^{2}-3 x-18}{}$	POD	$\lim _{x \rightarrow-3^{+}} f(x)=-\infty$		HA	
	POD at				$\square \square$
	$x=2$			$y=0$	-
					,
					- ! 11

iii)$f(x)=\frac{x^{4}-2 x^{3}-63 x^{2}}{x^{2}-10 x+16}$	VA$\begin{aligned} & x=2 \\ & x=8 \end{aligned}$	$\lim _{x \rightarrow 2^{-}} f(x)=-\infty$) $\quad \stackrel{y}{*}$	$\\|$
		$\lim _{x \rightarrow 2^{+}} f(x)=\infty$	No POD	$\lim _{x \rightarrow \infty} f(x)=D N E$	\because	
		$\lim _{x \rightarrow 8^{-}} f(x)=\infty$		No HA		
		$\lim _{x \rightarrow 8^{+}} f(x)=-\infty$			\mid	

iv) $f(x)=\frac{10 x^{3}-18 x}{x^{3}-x^{2}-2 x}$	VA $\begin{aligned} & x=-1 \\ & x=2 \end{aligned}$	$\begin{aligned} & \lim _{x \rightarrow-1^{-}} f(x)=-\infty \\ & \lim _{x \rightarrow-1^{+}} f(x)=\infty \\ & \lim _{x \rightarrow 2^{-}} f(x)=-\infty \\ & \lim _{x \rightarrow 2^{+}} f(x)=\infty \end{aligned}$	$\begin{aligned} & \text { POD } \\ & (0,9) \end{aligned}$	$\begin{aligned} & \lim _{x \rightarrow \infty} f(x)=10 \\ & \text { HA } \\ & y=10 \end{aligned}$	

vi)$f(x)=\frac{x^{3}+4 x^{2}+3 x}{x^{2}+8 x+15}$	VA $x=-5$ POD at $x=-3$	$\lim _{x \rightarrow-5^{-}} f(x)=-\infty$			
			POD		- $\}$
		$\lim _{x \rightarrow-5^{+}} f(x)=\infty$		$\lim _{x \rightarrow \infty} f(x)=D N E$	
			(-3,3)	No HA	-
					\cdots
					\cdots
) $\begin{array}{ll} & \\ & \\ \end{array}$
					$\square)^{+1} \times$

