Pre-Calculus 120B Infinite Limits

v = f(x)

There are many examples of functions that increase and/or decrease without bound. These functions have limit behaviour that does not exist. If the y-values increase or decrease without bound as x approaches c, we can write $\lim_{x\to c} f(x) = +\infty$ or $\lim_{x\to c} f(x) = -\infty$, respectively. It is important to note that infinity is a behaviour, not a value. Stating that the limit of a given function is $+\infty$ or $-\infty$ is simply a *specific* way of saying that the limit does not exist.

Example 1:

Find $\lim_{x \to a} f(x)$

Solution:

By looking at the graph of y=f(x), we can see that the y-values *increase*

without bound as x approaches a from the left and from the right.

 $\lim_{x \to a} f(x) = _$

Example 2:

Find $\lim_{x \to \infty} f(x)$

Solution:

By looking at the graph of y=f(x), we can see that the y-values *decrease* without bound as x approaches a from the left and from the right.

 $\lim_{x \to a} f(x) = \underline{\qquad}$

Example 3:

a. Find $\lim_{x \to q^-} f(x)$ b. Find $\lim_{x \to q^+} f(x)$

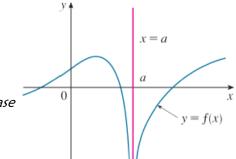
Solution:

a. By looking at the graph of y=f(x), we can see that the y-values *decrease* without bound as x approaches *a* from the *left*.

 $\lim_{x \to a^-} f(x) = \underline{\qquad}$

b. By looking at the graph of y=f(x), we can see that the y-values *increase* without bound as x approaches *a* from the *right*.

 $\lim_{x \to a^+} f(x) = \underline{\qquad}$



а

а

x = a

0

Vertical Asymptotes and Points of Discontinuity

To find these features of a given function, first factor the numerator and denominator. There will be either a vertical asymptote or a point of discontinuity at any x-value that would cause the denominator to equal zero.

Next, cancel like factors. If this eliminates the division by zero, then the function has a hole in the graph at the corresponding x-value. If canceling like factors does not eliminate the division by zero, then the function has a vertical asymptote at the corresponding x-value.

Once we have found the vertical asymptotes and points of discontinuity of a function, we can use limits to determine the behaviour of the function on each side of an asymptote and the y-coordinate of a point of discontinuity.

Functions that have *vertical asymptotes* approach positive or negative *infinity* as the x-values approach an asymptote from the left- and/or right-hand sides.

Functions that have *points of discontinuity* (holes) approach a *finite* value as the x-values approach a point of discontinuity from both sides.

Example 4:

Use factoring and simplifying to determine if there are any vertical asymptotes or points of discontinuity for the

function $f(x) = \frac{x^2 - 3x + 2}{x^2 - 4x + 3}$.

Solution:

$$f(x) = \frac{x^2 - 3x + 2}{x^2 - 4x + 3} =$$

Since the factor (x-1) cancels out of the denominator, we know there is a _____ at x = ____.

Since the factor (x-3) doesn't cancel out of the denominator, we know there is a _____ at x = ____.

Example 5:

As discovered in the previous example, the function $f(x) = \frac{x^2 - 3x + 2}{x^2 - 4x + 3}$ has a point of discontinuity at x = 1. Find the limit of f(x) as x approaches 1 in order to determine the y-coordinate of this point.

Solution:

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 4x + 3} = \lim_{x \to 1} \frac{(x - 2)(x - 1)}{(x - 3)(x - 1)} = \lim_{x \to 1} \frac{(x - 2)}{(x - 3)} =$$

Therefore, the coordinates of the P.O.D. are ______.

Example 6:

As discovered in example 4, the function $f(x) = \frac{x^2 - 3x + 2}{x^2 - 4x + 3}$ has a vertical asymptote at x = 3. Find the limit of f(x) as x approaches 3 from the left and from the right in order to determine the behaviour of the function on each side of the asymptote.

Solution:

Substitute an x-value very close to 3, approaching from the left (x < 3), to calculate the following limit:

$$\lim_{x \to 3^{-}} \frac{x^2 - 3x + 2}{x^2 - 4x + 3} = \lim_{x \to 3^{-}} \frac{(x - 2)(x - 1)}{(x - 3)(x - 1)} = \lim_{x \to 3^{-}} \frac{(x - 2)}{(x - 3)} =$$

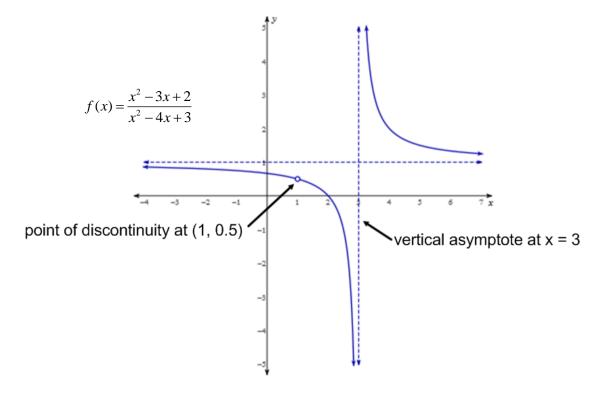
Therefore, the function ______ without bound as x approaches 3 from the left.

Substitute an x-value very close to 3, approaching from the right (x > 3), to calculate the following limit:

$$\lim_{x \to 3^+} \frac{x^2 - 3x + 2}{x^2 - 4x + 3} = \lim_{x \to 3^+} \frac{(x - 2)(x - 1)}{(x - 3)(x - 1)} = \lim_{x \to 3^+} \frac{(x - 2)}{(x - 3)} =$$

Therefore, the function ______ without bound as x approaches 3 from the right.

Note that the results of the previous examples are consistent with the features on the graph of f(x):



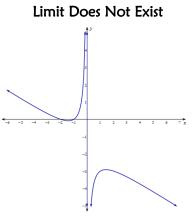
Pre-Calculus 120B Limits L3 Limits and End Behaviour: Horizontal Asymptotes

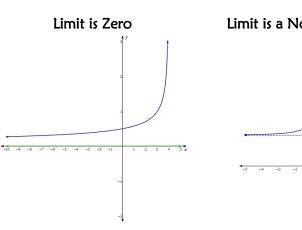
In order to determine the end behaviour of a function, we can evaluate limits at infinity. That is, we calculate a limit (algebraically, graphically, or numerically) as x approaches positive or negative infinity.

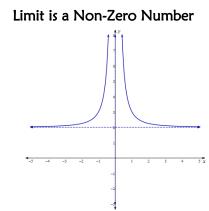
Using the result of the limit calculation, we can determine whether or not the graph of the function has a horizontal asymptote.

When direct substitution into the function produces the indeterminate form $\frac{\pm \infty}{\pm \infty}$ or $\infty - \infty$, we must be careful. These are cases which often have *finite* limits that can be determined through some algebraic manipulation.

For any function, there are three possibilities for the *limit at infinity*:







No horizontal asymptote

Horizontal asymptote at y = 0 Horizontal asymptote at y =limit

(In this case, y = 2)

Example 7: Determining a Limit at Infinity

Determine the end-behaviour of the function $f(x) = \frac{10x^2 + 7x}{3x^2 - 5x + 1}$ by calculating $\lim_{x \to \infty} \frac{10x^2 + 7x}{3x^2 - 5x + 1}$.

Solution:

Direct substitution gives $\frac{\infty}{\infty}$.

Divide the numerator and denominator by the highest power of x, simplify, and then substitute.

 $\lim_{x \to \infty} \frac{10x^2 + 7x}{3x^2 - 5x + 1} =$

Therefore, there is a horizontal asymptote for the function $f(x) = \frac{10x^2 + 7x}{3x^2 - 5x + 1}$ at ______.

Pre-Calculus 120B Example 8: Determining a Limit at Infinity

Determine the end-behaviour of the function $f(x) = \frac{4x^3 - 6x^2 + 8}{7x^5 + 6x^2 - 9x + 2}$ by calculating $\lim_{x \to \infty} \frac{4x^3 - 6x^2 + 8}{7x^5 + 6x^2 - 9x + 2}$.

Solution:

Direct substitution gives $\frac{\infty}{\infty}$.

Divide the numerator and denominator by the highest power of x, simplify, and then substitute.

$$\lim_{x \to \infty} \frac{4x^3 - 6x^2 + 8}{7x^5 + 6x^2 - 9x + 2} =$$

Therefore, there is a horizontal asymptote for the function $f(x) = \frac{4x^3 - 6x^2 + 8}{7x^5 + 6x^2 - 9x + 2}$ at _____.

Example 9: Determining a Limit at Infinity

Determine the end-behaviour of the function $f(x) = \frac{3-4x^2}{5x-1}$ by calculating $\lim_{x \to \pm \infty} \frac{3-4x^2}{5x-1}$.

Solution:

Direct substitution gives $\frac{\infty}{\infty}$ or $\frac{-\infty}{\infty}$.

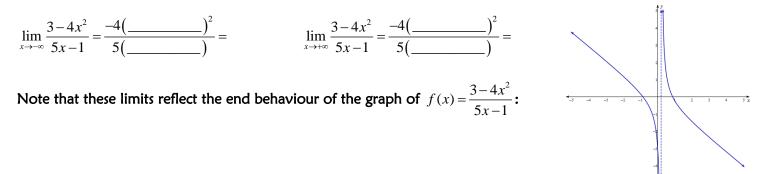
Divide the numerator and denominator by the highest power of x, simplify, and then substitute.

 $\lim_{x \to \pm \infty} \frac{3 - 4x^2}{5x - 1} =$

Therefore, there is *no* horizontal asymptote for the function $f(x) = \frac{3-4x^2}{5x-1}$.

To determine whether the function *increases* or *decreases* without bound, we can determine the limits at infinity separately (That is, the limit as x approaches *negative* infinity *and* the limit as x approaches *positive* infinity).

Substitute any representative x-value (very small, tending toward negative infinity, and then very large, tending toward positive infinity), into the *leading terms* of the numerator and denominator to determine if the overall limit will be *positive* or *negative* infinity.



Example 10: Limits at Infinity Involving Radicals

Determine $\lim_{x \to +\infty} \frac{\sqrt{2x^3 - x}}{3x^2 - 6}$

Solution:

Direct substitution gives $\frac{\infty}{\infty}$.

Divide the numerator and denominator by the highest power of x. Recall that, for example, $x^2 = \sqrt{x^4}$.

$$\lim_{x\to+\infty}\frac{\sqrt{2x^3-x}}{3x^2-6}=$$

Example 11: Limits at Infinity Involving Radicals

Determine $\lim_{x \to +\infty} (\sqrt{x^2 - 4x} - x)$

Solution:

Direct substitution gives $\infty - \infty$.

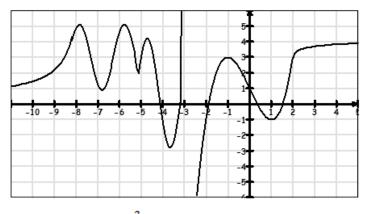
Multiply by the conjugate form of 1.

 $\lim_{x\to+\infty}(\sqrt{x^2-4x}-x)=$

Pre-Calculus 120B

Practice:

- 1. Explain in your own words the meaning of each of the following:
 - a) $\lim_{x \to -\infty} f(x) = 6$ b) $\lim_{x \to \infty} f(x) = -9$ c) $\lim_{x \to 4^+} f(x) = \infty$ d) $\lim_{x \to 6^-} f(x) = -\infty$
- 2. Can the graph of y = f(x) intersect the following? Explain.
 - a) vertical asymptote
 - b) horizontal asymptote
- 3. For the function whose graph is shown below, determine the following:
- a) $\lim_{x \to \infty} f(x)$ b) $\lim_{x \to -\infty} f(x)$ c) $\lim_{x \to -3^-} f(x)$ d) $\lim_{x \to -3^+} f(x)$
- e) State the equations of the vertical and horizontal asymptotes.



- 4. Evaluate $\lim_{x \to \infty} \frac{x^2}{2^x}$ by using a table of values.
- 5. Evaluate the following limits.

a)
$$\lim_{x \to \infty} \frac{5x^4 - 7x^3 + 7x^2 - 1}{3x^4 + 2x^3}$$
b)
$$\lim_{x \to -\infty} \frac{x^5 - x^2}{x^3 - 2x}$$
c)
$$\lim_{x \to \infty} \frac{9x^2 - x + 8}{2x^4 + x^3 - 7}$$
d)
$$\lim_{x \to -\infty} \frac{12x^2 - 6x^3 + 5x^4 + 9x^5}{3x^5 + 2x^4 - 4x^3 + 2x}$$
e)
$$\lim_{x \to \infty} \frac{5x^3 - 4x^2 - 5x}{4x^3 + 3x}$$
f)
$$\lim_{x \to \infty} \left[\left(\frac{1}{8}\right)^x + \frac{x^3 - 4x^2 - 5x}{4x^3 + 3x} - 7 \right]$$
g)
$$\lim_{x \to \infty} \left[\left(\frac{7}{3}\right)^{-x} + \frac{4x^2 - 5x}{2x^2 + 1} - 9 \right]$$
h)
$$\lim_{x \to -\infty} \left(\frac{1}{5}\right)^{2x}$$
i)
$$\lim_{x \to \infty} \frac{(-2x^2 - 3)(x + 1)}{2 - 5x^3}$$
j)
$$\lim_{x \to \infty} \left[12 - \left(\frac{6}{5}\right)^x \right]$$
h)
$$\lim_{x \to \infty} \left[\frac{10x^2}{\sqrt{4x^4 + 1}}$$
l)
$$\lim_{x \to \infty} \frac{2x}{\sqrt{x^2 - 2} - 3x}$$
m)
$$\lim_{x \to \infty} \frac{4 - \frac{3}{x}}{5x^2 + 1}$$
n)
$$\lim_{x \to \infty} \left[\frac{6x}{2x - 1} - \frac{x + 5}{3x - 4} \right]$$
o)
$$\lim_{x \to \infty} \left[x - \sqrt{x^2 + 1} \right]$$
p)
$$\lim_{x \to -\infty} \frac{|x - 8|}{x - 8}$$
q)
$$\lim_{x \to \infty} \left[2x - \sqrt{4x^2 + 6x} \right]$$
r)
$$\lim_{x \to \infty} (x - 3)^2 (x + 1)^5$$

7

6. Consider each of the following functions:

i.
$$f(x) = \frac{x^2 + 8x - 20}{2x^2 + x - 6}$$

ii. $f(x) = \frac{-2x + 4}{x^3 + 4x^2 - 3x - 18}$
iii. $f(x) = \frac{x^4 - 2x^3 - 63x^2}{x^2 - 10x + 16}$
iv. $f(x) = \frac{10x^3 - 18x}{x^3 - x^2 - 2x}$
v. $f(x) = \frac{9 - x^2}{16 - 2x^3}$
vi. $f(x) = \frac{x^3 + 4x^2 + 3x}{x^2 + 8x + 15}$

- a. determine if there are any vertical asymptotes and/or points of discontinuity, and for which values of x these occur.
- b. use limits to determine the behavior of f(x) on each side of any vertical asymptote that exists.
- c. *use limits* to determine the coordinates of any point of discontinuity that exists.
- d. use limits to determine whether or not a horizontal asymptote exists and, if so, what its equation is.

Answers:

- 1. a) As x approaches negative infinity, the value of the function approaches 6.
 - b) As x approaches positive infinity, the value of the function approaches -9.
 - c) As x approaches 4 from the right hand side, the value of the function gets increasingly large, approaching positive infinity.
 - d) As x approaches 6 from the left hand side, the value of the function becomes more negative, approaching negative infinity.
- 2. a) No, the function is undefined at a vertical asymptote.
 - b) Yes, the graph of a function can cross a horizontal asymptote. A horizontal asymptote describes the *end-behaviour* of a function its tendency to approach a particular y-value as x approaches positive or negative infinity.

3. a) 4
b) 1
c)
$$\infty$$

d) $-\infty$
e) $HA : y = 1 \text{ and } y = 4$
 $VA : x = -3$
4. $\lim_{x \to \infty} \frac{x^2}{2^x} = 0$
5. a) $\frac{5}{3}$ b) ∞ c) 0 d) 3 e) $\frac{5}{4}$ f) $-\frac{27}{4}$ g) -7 h) ∞ i) $\frac{2}{5}$ j) 12
k) 5 l) -1 m) 0 n) $\frac{8}{3}$ o) 0 p) -1 q) $-\frac{3}{2}$ r) $-\infty$ s) ∞

6.

i) $f(x) = \frac{x^2 + 8x - 20}{2x^2 + x - 6}$	VA x=3/2 x=-2	$\lim_{x \to -2^{-}} f(x) = -\infty$ $\lim_{x \to -2^{+}} f(x) = \infty$ $\lim_{x \to \frac{3^{-}}{2}} f(x) = \infty$ $\lim_{x \to \frac{3^{+}}{2}} f(x) = -\infty$	No POD	$\lim_{x \to \infty} f(x) = \frac{1}{2}$ HA $y = \frac{1}{2}$	
---	---------------------	---	--------	---	--

ii)

$$f(x) = \frac{-2x+4}{x^3+4x^2-3x-18}$$

$$x = -3$$

$$\lim_{x \to -3^+} f(x) = -\infty$$

$$\lim_{x \to -3^+} f(x) = -\infty$$

$$(2, -0.08)$$

$$HA$$

$$y = 0$$

$$HA$$

iii)	VA	$\lim_{x\to 2^-} f(x) = -\infty$			
$f(x) = \frac{x^4 - 2x^3 - 63x^2}{x^2 - 10x + 16}$	x=2 x=8	$\lim_{x \to 2^+} f(x) = \infty$ $\lim_{x \to 8^-} f(x) = \infty$ $\lim_{x \to 8^+} f(x) = -\infty$	No POD	$\lim_{x\to\infty} f(x) = DNE$ No HA	

iv) $f(x) = \frac{10x^3 - 18x}{x^3 - x^2 - 2x}$	VA x=-1 x=2	$\lim_{x \to -1^{-}} f(x) = -\infty$ $\lim_{x \to -1^{+}} f(x) = \infty$ $\lim_{x \to 2^{-}} f(x) = -\infty$ $\lim_{x \to 2^{+}} f(x) = \infty$	POD (0,9)	$\lim_{x \to \infty} f(x) = 10$ HA $y = 10$	
--	-------------------	---	--------------	---	--

ν)	VA				A.7
$f(x) = \frac{9 - x^2}{16 - 2x^3}$	x=2	$\lim_{x \to 2^{-}} f(x) = \infty$ $\lim_{x \to 2^{+}} f(x) = -\infty$	No POD	$\lim_{x \to \infty} f(x) = 0$ HA y=0	

vi)	VA	$\lim_{x\to -5^-} f(x) = -\infty$			
$f(x) = \frac{x^3 + 4x^2 + 3x}{x^2 + 8x + 15}$	x=-5 POD at	$\lim_{x\to -5^+} f(x) = \infty$	POD (-3,3)	$\lim_{x\to\infty} f(x) = DNE$ No HA	
$x^2 + 8x + 15$	x=-3				