Understanding Limits

In algebra, we are often required to calculate an exact value of a function $y=f(x)$. When determining a specific y-value of a function, we simply need the corresponding x-value.

However, what if the function isn't just a simple curve? For example, we will be examining functions with holes, functions that shoot up toward infinity, functions that oscillate, etc. To describe the behaviour of the y-values of such functions, we can use a limit.

Intuitive Definition of a Limit

The limit of a function describes how a function behaves near a specific point, but not at that point. If the values of $y=f(x)$ get closer and closer to one number, L, as we take values of x very close to (but not equal to) a number, c, then we say "The limit of $f(x)$, as x approaches c, is L " and we write:
$\lim _{x \rightarrow c} f(x)=L$
It is important to note that the value of the limit at $x=c$ does not depend on the value of the function at $x=c$.

- $f(c)$ is a single number that describes the value of $f(x)$ at point $x=c$.
- $\lim _{x \rightarrow c} f(x)$ is a single number that describes the behavior of $f(x)$ near, but not at, the point $x=c$.

Using Tables to Find Limits

One way to approximate a limit is to use a table of values. Choose x-values close to c from both the left and the right. If the y-values approach a distinct value, L, as x approaches c, then the limit is L.

Example 1:

Determine the value of $\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x-5}$

Solution:

1. Create a table of values for the function $f(x)=\frac{x^{2}-3 x-10}{x-5}$ and fill in values of x that get close to 5 from both sides. Then, calculate the corresponding $f(x)$ values.

x	4	4.5	4.9	4.95	5	5.05	5.1	5.5	6
$f(x)$									

2. Examine the table to determine if the $f(x)$ values approach the same number from the left and the right.
$\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x-5}=$ \qquad
[^0]
Using Graphs to Find Limits

If we have the graph of a function $f(x)$ near $x=c$, then it is usually easy to determine $\lim _{x \rightarrow c} f(x)$.

Example 2:

Use the graph of the function to the right to determine the following limits.
a. $\lim _{x \rightarrow 4} f(x)$
b. $\lim _{x \rightarrow 2} f(x)$

Solution:

a. As the x-values get closer to 4 from the left and from the right (We will learn more about Left- \& Right-Hand Limits later), the y-values get closer to \qquad .

Note that $f(4)=$ \qquad , but the limit of $f(x)$ as x approaches 4 is \qquad .
$\lim _{x \rightarrow 4} f(x)=$ \qquad

b. As the x-values get closer to 2 from the left and from the right, the y-values get closer to \qquad .

Note that $\mathrm{f}(2)=$ \qquad . In this case, the function value and the limit value are the same. $\lim _{x \rightarrow 2} f(x)=$ \qquad

Example 3:

Use the graph of the function to the right to determine the following limits.
a. $\lim _{x \rightarrow a} f(x)$
b. $\lim _{x \rightarrow b} f(x)$
c. $\lim _{x \rightarrow c} f(x)$

Solution:

a. As the x-values get closer to a from either side, the y-values get closer to \qquad .

Note that the function doesn't exist at a, but the limit does.
$\lim _{x \rightarrow a} f(x)=$ \qquad
b. As the x-values get closer to b from the left, the y-values get closer to \qquad .
As the x-values get closer to b from the right, the y-values get closer to \qquad .

Since the function approaches different values from each side, the limit does not exist.
$\lim _{x \rightarrow b} f(x)$ \qquad
c. As the x-values get closer to c from either side, the y-values get closer to \qquad .

Since the function approaches infinity from each side, the limit does not exist.
$\lim _{x \rightarrow c} f(x)$ \qquad

Calculating Limits Algebraically

Limit Rules

If n is a positive integer, k is a constant, and $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are functions that have limits at $\mathrm{x}=\mathrm{c}$, then the following rules hold:

1. Constant Rule

$$
\lim _{x \rightarrow c} k=k
$$

2. Identity Rule

$$
\lim _{x \rightarrow c} x=c
$$

3. Constant Multiple Rule

$$
\lim _{x \rightarrow c} k f(x)=k \lim _{x \rightarrow c} f(x)
$$

4. Sum Rule

$$
\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)
$$

6. Product Rule

$$
\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)
$$

7. Quotient Rule

$\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$, if $\lim _{x \rightarrow c} g(x) \neq 0$
8. Power Rule
$\lim _{x \rightarrow c}[f(x)]^{n}=\left[\lim _{x \rightarrow c} f(x)\right]^{n}$
9. $\mathrm{n}^{\text {th }}$ Root Rule
$\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow c} f(x)}$, if $\lim _{x \rightarrow c} f(x)>0$

5. Difference Rule

$$
\lim _{x \rightarrow c}[f(x)-g(x)]=\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x)
$$

Example 4: Finding a Limit Using Limit Rules

Find $\lim _{x \rightarrow-2} 3$

Solution:

Use the Constant Rule for limits.
$\lim _{x \rightarrow-2} 3=$ \qquad
Look at the graph of the function $y=3$ to see why the limit of the constant function as \times approaches 3 is the same as the constant value. Notice that for this function, the limit as x approaches any value is 3 .

Example 5: Finding a Limit Using Limit Rules

Find $\lim _{x \rightarrow 3}\left(2 x^{2}-4 x-1\right)$

Solution:

Use the Difference Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 3}\left(2 x^{2}-4 x-1\right) & =\lim _{x \rightarrow 3} 2 x^{2}-\lim _{x \rightarrow 3} 4 x-\lim _{x \rightarrow 3} 1 \\
& =2 \lim _{x \rightarrow 3} x^{2}-4 \lim _{x \rightarrow 3} x-\lim _{x \rightarrow 3} 1 \\
& =2\left(\lim _{x \rightarrow 3} x\right)^{2}-4 \lim _{x \rightarrow 3} x-\lim _{x \rightarrow 3} 1 \\
& =2\left(\lim _{x \rightarrow 3} x\right)^{2}-4 \lim _{x \rightarrow 3} x-1 \\
& =2(3)^{2}-4(3)-1 \\
& =5
\end{aligned}
$$

Simplify.
Note that the limit as x approaches 3 is the same as the function value at $x=3$.
This is always the case for limits of polynomial functions.
We can use direct substitution to evaluate all polynomial limits.

Example 6: Finding a Limit by Direct Substitution

a. Find $\lim _{x \rightarrow-1}\left(-x^{4}+5 x^{3}+3 x^{2}-1\right)$
b. Find $\lim _{x \rightarrow 8} \frac{x^{2}-2 x-3}{x+2}$

Solution:

a. Use direct substitution.

$$
\begin{aligned}
\lim _{x \rightarrow-1}\left(-x^{4}+5 x^{3}+3 x^{2}-1\right) & =-(-1)^{4}+5(-1)^{3}+3(-1)^{2}-1 \\
& = \\
& =
\end{aligned}
$$

b. Use direct substitution.

$$
\begin{aligned}
\lim _{x \rightarrow 8} \frac{x^{2}-2 x-3}{x+2} & =\frac{8^{2}-2(8)-3}{8+2} \\
& = \\
& =
\end{aligned}
$$

Example 7: Finding a Limit by Factoring \& Simplifying First

a. Find $\lim _{x \rightarrow 1} \frac{2 x^{2}-x-1}{x-1}$
b. Find $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$

Solution:

a. If we try to evaluate $\lim _{x \rightarrow 1} \frac{2 x^{2}-x-1}{x-1}$ by using direct substitution, we get $\frac{2(1)^{2}-1-1}{1-1}=\frac{0}{0}$.

So, factor and simplify first, then use substitution.
$\lim _{x \rightarrow 1}=\frac{2 x^{2}-x-1}{x-1}=$
b. If we try to evaluate $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$ by using direct substitution, we get $\frac{(2)^{3}-8}{2-2}=\frac{0}{0}$.

So, factor and simplify first, then use substitution.

Example 8: Finding a Limit by Using the Conjugate Technique

a. Find $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$
b. Find $\lim _{x \rightarrow-3} \frac{2-\sqrt{x^{2}-5}}{x+3}$

Solution:

a. Direct substitution yields $\frac{0}{0}$. So, multiply by the conjugate form of 1 .
b. Direct substitution yields $\frac{0}{0}$. So, multiply by the conjugate form of 1 .

$$
\lim _{x \rightarrow-3} \frac{2-\sqrt{x^{2}-5}}{x+3}
$$

Practice:

1. Determine the following limits graphically.
a. $\quad \lim _{x \rightarrow 1} f(x)$

c. $\lim _{x \rightarrow-1} f(x)$

e. $\quad \lim _{x \rightarrow \frac{\pi}{6}} f(x)$

b. $\quad \lim _{x \rightarrow 1} f(x)$

d. $\lim _{x \rightarrow 3} f(x)$

f. $\lim _{x \rightarrow 4} f(x)$

2. Use the Limit Rules to calculate $\lim _{x \rightarrow 3} \frac{(4 x+2)^{2}}{\sqrt[3]{1-x^{2}}}$.
3. Evaluate the following limits.
a) $\lim _{x \rightarrow 4} \frac{x-4}{x^{3}-64}$
b) $\lim _{x \rightarrow 7} \frac{\sqrt[5]{3-5 x}}{(x-5)^{3}}$
c) $\lim _{x \rightarrow-3} \frac{x+3}{3-\sqrt{x+12}}$
d) $\lim _{x \rightarrow-3} \sqrt[3]{\frac{x-4}{6 x^{2}+2}}$
e) $\lim _{x \rightarrow 3} \frac{\frac{1}{x^{2}}-\frac{1}{9}}{x-3}$
f) $\lim _{h \rightarrow 0} \frac{(-3+h)^{2}-9}{h}$
g) $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$
h) $\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}-1}{x}$
j) $\lim _{x \rightarrow-8} \frac{x+8}{\sqrt[3]{x}+2}$
k) $\lim _{x \rightarrow-1} \frac{8}{(3+x) \sqrt{3-x}}$
n) $\lim _{x \rightarrow 9} \frac{x^{2}-81}{3-\sqrt{x}}$
p) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{3 x^{2}-7 x+2}$
s) $\lim _{x \rightarrow 5} \frac{2 x}{x-5}$
t) $\lim _{x \rightarrow 0} \frac{x^{3}}{2 x^{3}+3 x^{4}}$
1) $\lim _{x \rightarrow 9} \frac{x-9}{3-\sqrt{x}}$
m) $\lim _{x \rightarrow 0} \frac{(3+x)^{3}-3^{3}}{(3+x)^{2}-3^{2}}$
o) $\lim _{x \rightarrow 16} \frac{2 \sqrt{x}+x^{3 / 2}}{\sqrt[4]{x}+5}$
q) $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}$
r) $\lim _{x \rightarrow 4}\left(\frac{8}{x^{2}-16}-\frac{1}{x-4}\right)$
u) $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{2 x^{2}-7 x+6}$
v) $\lim _{x \rightarrow \pi} \frac{1+\sin x}{\cos x}$
w) $\lim _{x \rightarrow \frac{\pi}{4}}((\cos x)+(\sin x))$
x) $\lim _{x \rightarrow \frac{3 \pi}{2}} \frac{\sin x}{\cos x}$
y) $\lim _{x \rightarrow 4} \frac{2 x^{3}-128}{\sqrt{x}-2}$

Answers:

1.

a. 2
b. 0
c. 3
d. DNE
e. 2
f. 6
2.

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{(4 x+2)^{2}}{\sqrt[3]{1-x^{2}}}=\frac{\lim _{x \rightarrow 3}(4 x+2)^{2}}{\lim _{x \rightarrow 3} \sqrt[3]{1-x^{2}}}=\frac{\left(\lim _{x \rightarrow 3}(4 x+2)\right)^{2}}{\sqrt[3]{\lim _{x \rightarrow 3}\left(1-x^{2}\right)}}=\frac{\left(\lim _{x \rightarrow 3}(4 x)+\lim _{x \rightarrow 3} 2\right)^{2}}{\sqrt[3]{\lim _{x \rightarrow 3} 1-\lim _{x \rightarrow 3}\left(x^{2}\right)}}=\frac{\left(4 \lim _{x \rightarrow 3} x+\lim _{x \rightarrow 3} 2\right)^{2}}{\sqrt[3]{\lim _{x \rightarrow 3} 1-\left(\lim _{x \rightarrow 3} x\right)^{2}}} \\
&=\frac{(4(3)+2)^{2}}{\sqrt[3]{1-(3)^{2}}} \\
&=\frac{196}{\sqrt[3]{-8}}=\frac{196}{-2}=-98
\end{aligned}
$$

3. a) $\frac{1}{48}$
b) $-\frac{1}{4}$
c) -6
d) $-\frac{1}{2}$
e) $-\frac{2}{27}$
f) -6
g) 12
h) -1
i) -1
j) 12
k) 2
1) -6
m) $\frac{9}{2}$
n) -108
o) $\frac{72}{7}$
р) $\frac{4}{5}$
q) $\frac{1}{6}$
r) $-\frac{1}{8}$
s) $D N E$
t) $\frac{1}{2}$
u) 2
v) -1
w) $\sqrt{2}$
x) $D N E$
у) 384

[^0]: * Note that we cannot find the limit by substituting $x=5$ into the function since this results in division by zero.

