5.6: Properties of Linear Relations

Lesson Focus: Identify and Represent Linear Relations in Different Ways

Make Connections

The table of values and graph show the cost of a pizza with up to 5 extra toppings.

What patterns do you see in the table? In the graph?

Write a rule for the pattern that relates the cost of the pizza to the number of extra toppings.

How can you tell that that this relation is linear?

Example A:
A cost for a car rental is $\$ 60$ plus $\$ 20$ for every 100 km driven.
The INDEPENDENT VARIABLE is the \qquad .

The DEPENDENT VARIABLE is the \qquad .

We can identify that this is a linear relation in a number of ways:

- A table of values:

Distance driven (km)	Total Cost (\$)
0	
100	
200	
300	
400	

For a linear relations, a constant change in the independent variable leads to a constant change in the depending variable

- A set of ordered pairs:
\{
), (
), (
),(
), (
) $\}$
- A graph

The graph of a linear relation is a straight line.

We can use each representation to determine RATE OF CHANGE

We can express RATE OF CHANGE as a fraction:

change in dependent variable

 change in independent variableThe rate of change is $\$ 0.20 / \mathrm{km}$; that is, for each additional 1 km driven, the rental cost increases by 204 . The rate of change is constant for a linear relation.

We can determine the rate of change from the equation that represents the linear function.

Let the cost be C dollars and the distance driven be d kilometres.
An equation for this linear function is:

Example 1

Determining whether a Table of Values Represents a Linear Relation

Which table of values represents a linear relation? Justify the answer.
a) The relation between temperature in degrees
b) The relation between the current, $I \mathrm{amps}$, and

Celsius, C, and temperature
in degrees Fahrenheit, F

C	F
0	32
5	41
10	50
15	59

power, P watts, in an electrical circuit

Graph each of the following:

a) $y=-2 x+3$

b) $y=x^{2}-1$

Example 3 Identifying a Linear Relation

Which relation is linear? Justify the answer.
a) A new car is purchased for $\$ 24000$. Every year, the value of the car decreases by 15%. The value is related to time.
b) For a service call, an electrician charges a $\$ 75$ flat rate, plus $\$ 50$ for each hour he works. The total cost for service is related to time.

Example 4
 Determining the Rate of Change of a Linear Relation from Its Graph

A water tank on a farm near Swift Current, Saskatchewan, holds 6000 L.
Graph A represents the tank being filled at a constant rate.
Graph B represents the tank being emptied at a constant rate.

Graph A
Filling a Water Tank

Graph B
Emptying a Water Tank

a) Identify the independent and dependent variables.
b) Determine the rate of change of each relation, then describe what it represents.

