5.6: Properties of Linear Relations

Lesson Focus: Identify and Represent Linear Relations in Different Ways

Make Connections

What patterns do you see in the table? In the graph?

Write a rule for the pattern that relates the cost of the pizza to the number of extra toppings.

How can you tell that that this relation is linear?

Example A:

A cost for a car rental is \$60 plus \$20 for every 100 km driven.

The INDEPENDENT VARIABLE is the	·
---------------------------------	---

The DEPENDENT VARIABLE is the	

We can identify that this is a linear relation in a number of ways:

• A table of values:

Distance driven	Total Cost (\$)
(km)	
0	
100	
200	
300	
400	

For a linear relations, a constant change in the independent variable leads to a constant change in the depending variable

• A set of ordered pairs:

{(), (), (), (), (), ()}

• A graph

The graph of a linear relation is a straight line.

We can use each representation to determine RATE OF CHANGE

We can express **RATE OF CHANGE** as a fraction:

change in dependent variable change in independent variable

The rate of change is \$0.20/km; that is, for each additional 1 km driven, the rental cost increases by 20¢. The rate of change is constant for a linear relation.

=

We can determine the rate of change from the equation that represents the linear function.

Let the cost be *C* dollars and the distance driven be *d* kilometres.

An equation for this linear function is:

Which table of values represents a linear relation? Justify the answer.

0	<u>^</u>
0	32
5	41
10	50
15	59

Graph each of the following:

Example 3 Identifying a Linear Relation

Which relation is linear? Justify the answer.

- a) A new car is purchased for \$24 000. Every year, the value of the car decreases by 15%. The value is related to time.
- b) For a service call, an electrician charges a \$75 flat rate, plus \$50 for each hour he works. The total cost for service is related to time.

Example 4 Determining the Rate of Change of a Linear Relation from Its Graph

A water tank on a farm near Swift Current, Saskatchewan, holds 6000 L. Graph A represents the tank being filled at a constant rate. Graph B represents the tank being emptied at a constant rate.

a) Identify the independent and dependent variables.

b) Determine the rate of change of each relation, then describe what it represents.