Negative Exponents and Reciprocals

Compare the following pairs of numbers:
$\pm 2^{-1}$ and $2^{1} \quad \llbracket 2^{-2}$ and $2^{2} \quad \llbracket 2^{-3}$ and 2^{3}
What relationships do you notice?

Powers with Negative Exponents

When x is any non-zero number and n is a rational number, x^{-n} is the reciprocal of x^{n}.

That is, $x^{-n}=\frac{1}{x^{n}}$ and $\frac{1}{x^{-n}}=x^{n}, x \neq 0$

Example 1
 Evaluating Powers with Negative Integer

 ExponentsEvaluate each power.
a) 3^{-2}
b) $\left(-\frac{3}{4}\right)^{-3}$
c) 0.3^{-4}

Evaluate each power without using a calculator.
a) $8^{-\frac{2}{3}}$
b) $\left(\frac{9}{16}\right)^{\frac{3}{2}}$
2. Evaluate each power without using a calculator.
a) $16^{\frac{5}{4}}$
b) $\left(\frac{25}{36}\right)^{-\frac{1}{2}}$

Example 3 Applying Negative Exponents

Paleontologists use measurements from fossilized dinosaur tracks and the formula $v=0.155 s^{\frac{5}{3}} f^{-\frac{7}{6}}$ to estimate the speed at which the dinosaur travelled. In the formula, v is the speed in metres per second, s is the distance between successive footprints of the same foot, and f is the foot length in metres. Use the measurements in the diagram to estimate the speed of the dinosaur.

