Negative Exponents and Reciprocals

Compare the following pairs of numbers:

- 2-1 and 21
- 2-2 and 22
- 2-3 and 23

What relationships do you notice?

Powers with Negative Exponents

When x is any non-zero number and n is a rational number, x^{-n} is the reciprocal of x^n .

That is,
$$x^{-n} = \frac{1}{x^n}$$
 and $\frac{1}{x^{-n}} = x^n$, $x \neq 0$

Example 1

Evaluating Powers with Negative Integer Exponents

Evaluate each power.

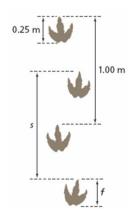
- a) 3^{-2} b) $\left(-\frac{3}{4}\right)^{-3}$ c) 0.3^{-4}

Example 2

Evaluating Powers with Negative Rational **Exponents**

Evaluate each power without using a calculator.

- b) $\left(\frac{9}{16}\right)^{\frac{3}{2}}$


- Evaluate each power without using a calculator.

 - a) $16^{\frac{5}{4}}$ b) $\left(\frac{25}{36}\right)^{\frac{1}{2}}$

Example 3 Applying Negative Exponents

Paleontologists use measurements from fossilized dinosaur tracks and the formula $v = 0.155 \, s^{\frac{5}{3}} f^{-\frac{7}{6}}$ to estimate the speed at which the dinosaur travelled. In the formula, v is the speed in metres per second, s is the distance between successive footprints of the same foot, and f is the foot length in metres. Use the measurements in the diagram to estimate the speed of the dinosaur.

